Bayesian Inference on a Cox Process Associated with a Dirichlet Process
نویسندگان
چکیده
In ecology and epidemiology, spatio-temporal distributions of events can be described by Cox processes. Situations for which there exists a hidden process which contributes to random effects on the intensity of the observed Cox process are considered. The observed process is a generalized shot noise Cox process and the hidden process is a Poisson process associated with a Dirichlet process. The distributional properties of quadrat counts are presented and bayesian inference is proposed for estimating and predicting parameters of interest in the model. Illustrations are given from weed spatial count data and disease mortality data.
منابع مشابه
Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملThe Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model
Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...
متن کاملProperties of Spatial Cox Process Models
Probabilistic properties of Cox processes of relevance for statistical modeling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties and point process operations such as thinning, displacements, and superpositioning. We also discuss...
متن کاملOn Nonparametric Bayesian Inference for the Distribution of a Random Sample
The nonparametric Bayesian approach for inference regarding the unknown distribution of a random sample customarily assumes that this distribution is random and arises through Dirichlet process mixing. Previous work within this setting has focused on the mean of the posterior distribution of this random distribution which is the predictive distribution of a future observation given the sample. ...
متن کاملTruncation-free Stochastic Variational Inference for Bayesian Nonparametric Models
We present a truncation-free stochastic variational inference algorithm for Bayesian nonparametric models. While traditional variational inference algorithms require truncations for the model or the variational distribution, our method adapts model complexity on the fly. We studied our method with Dirichlet process mixture models and hierarchical Dirichlet process topic models on two large data...
متن کامل